Projective line over the finite quotient ring GF(2)[x]/〈x 3 − x〉 and quantum entanglement: Theoretical background

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Entanglement and Projective Ring Geometry

The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15×15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed...

متن کامل

The connected components of the projective line over a ring

The main result of the present paper is that the projective line over a ring R is connected with respect to the relation ``distant'' if, and only if, R is a GE2-ring. 2000 Mathematics Subject Classi®cation. 51C05, 20H25.

متن کامل

Quantum Entanglement Math Background Notes

Each of these examples turns out to be a surface in R 2 or C 2 = R 2 . The trivial group is a single point and the general linear group is an open subset of R 2 or C 2 . The unitary group U(1) is the unit circle S in C = R, and the special orthogonal group SO(2) turns out to be the same thing even though it lives in R. The special unitary group SU(2) is the three dimensional sphere S (even thou...

متن کامل

Projective Modules over Finite Groups

Serre [5] has recently proved a general theorem about projective modules over commutative rings. This theorem has the following consequence : If 7T is a finite abelian group, any finitely generated projective module over the integral group ring Zir is the direct sum of a free module and an ideal of Zir. The question naturally arises as to whether this result holds for nonabelian groups x. Serre...

متن کامل

Heights on the Finite Projective Line

Define the height function h(a) = min{k + (ka mod p) : k = 1, 2, . . . , p − 1} for a ∈ {0, 1, . . . , p − 1.} It is proved that the height has peaks at p, (p+1)/2, and (p+c)/3, that these peaks occur at a = [p/3], (p−3)/2, (p− 1)/2, [2p/3], p − 3, p− 2, and p − 1, and that h(a) ≤ p/3 for all other values of a. 1. Heights on finite projective spaces Let p be an odd prime and let Fp = Z/pZ and F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Mathematical Physics

سال: 2007

ISSN: 0040-5779,1573-9333

DOI: 10.1007/s11232-007-0035-y